Programming by Demonstration with Situated Semantic Parsing

نویسندگان

  • Yoav Artzi
  • Maxwell Forbes
  • Kenton Lee
  • Maya Cakmak
چکیده

Introduction Programming by Demonstration (PbD) is an approach to programming robots by demonstrating the desired behavior (Billard et al. 2008). Speech is a natural, hands-free way to augment demonstrations with control commands that guide the PbD process. However, existing speech interfaces for PbD systems rely on ad-hoc, predefined command sets that are rigid and require user training (Weiss et al. 2009; Akgun et al. 2012; Cakmak and Takayama 2014). Instead, we aim to develop flexible speech interfaces to accommodate user variations and ambiguous utterances. To that end, we propose to use a situated semantic parser that jointly reasons about the user’s speech and the robot’s state to resolve ambiguities. In this paper, we describe this approach and compare its utility to a rigid speech command interface.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

برچسب‌زنی خودکار نقش‌های معنایی در جملات فارسی به کمک درخت‌های وابستگی

Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...

متن کامل

Extracting Knowledge from Text with PIKES

In this demonstration we showcase PIKES, a Semantic Role Labeling (SRL)-powered approach for Knowledge Extraction. PIKES implements a rule-based strategy that reinterprets SRL output in light of other linguistic analyses, such as dependency parsing and co-reference resolution, thus properly capturing and formalizing in RDF important linguistic aspects such as argument nominalization, frame-fram...

متن کامل

Semantic Parsing to Probabilistic Programs for Situated Question Answering

Situated question answering is the problem of answering questions about an environment such as an image or diagram. This problem requires jointly interpreting a question and an environment using background knowledge to select the correct answer. We present Parsing to Probabilistic Programs (P ), a novel situated question answering model that can use background knowledge and global features of t...

متن کامل

Incremental Generation of Visually Grounded Language in Situated Dialogue (demonstration system)

We present a multi-modal dialogue system for interactive learning of perceptually grounded word meanings from a human tutor (Yu et al., ). The system integrates an incremental, semantic, and bidirectional grammar framework – Dynamic Syntax and Type Theory with Records (DS-TTR1, (Eshghi et al., 2012; Kempson et al., 2001)) – with a set of visual classifiers that are learned throughout the intera...

متن کامل

برچسب‌زنی نقش معنایی جملات فارسی با رویکرد یادگیری مبتنی بر حافظه

Abstract Extracting semantic roles is one of the major steps in representing text meaning. It refers to finding the semantic relations between a predicate and syntactic constituents in a sentence. In this paper we present a semantic role labeling system for Persian, using memory-based learning model and standard features. Our proposed system implements a two-phase architecture to first identify...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014